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ABSTRACT

Motivation: Post-translational modifications to histones have
several well known associations with regulation of gene expression.
While some modifications appear concentrated narrowly, covering
promoters or enhancers, others are dispersed as epigenomic
domains. These domains mark contiguous regions sharing an
epigenomic property, such as actively transcribed or poised genes,
or heterochromatically silenced regions. While high-throughput
methods like ChIP-Seq have led to a flood of high-quality data
about these epigenomic domains, there remain important analysis
problems that are not adequately solved by current analysis tools.
Results: We present the RSEG method for identifying epigenomic
domains from ChIP-Seq data for histone modifications. In contrast
with other methods emphasizing the locations of ‘peaks’ in read
density profiles, our method identifies the boundaries of domains.
RSEG is also able to incorporate a control sample and find genomic
regions with differential histone modifications between two samples.
Availability: RSEG, including source code and documentation, is
freely available at http://smithlab.cmb.usc.edu/histone/rseg/.
Contact: anrewds@usc.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Post-translational modifications to histone tails, including
methylation and acetylaytion, have been associated with important
regulatory roles in cell differentiation and disease development
(Kouzarides, 2007). The application of ChIP-Seq to histone
modification study has proved very useful for understanding the
genomic landscape of histone modifications (Barski et al., 2007;
Mikkelsen et al., 2007). Certain histone modifications are tightly
concentrated, covering a few hundred base pairs. For example,
H3K4me3 is usually associated with active promoters, and occurs
only at nucleosomes close to transcription start sites (TSSs). On
the other hand, many histone modifications are diffuse and occupy
large regions, ranging from thousands to several millions of base
pairs. A well known example H3K36me3 is associated with active
gene expression and often spans the whole gene body (Barski et al.,
2007). Reflected in ChIP-Seq data, the signals of these histone
modifications are enriched over large regions, but lack well-defined
peaks. It is worth pointing out that the property of being ‘diffuse’
is matter of degrees. Besides the modification frequency, the
modification profile over a region is also affected by nucleosome
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densities and the strength of nucleosome positioning. By visual
inspection of read-density profiles, we found that H2BK5me1,
H3K79me1, H3K79me2, H3K79me3, H3K9me1, H3K9me3 and
H3R2me1 show similar diffuse profiles.

There are several general questions about dispersed epigenomic
domains that remain unanswered. Many of these questions center
around how these domains are established and maintained. One
critical step in answering these questions is to accurately locate the
boundaries of these domains. However, most of existing methods
for ChIP-Seq data analysis were originally designed for identifying
transcription factor binding sites. These focus on locating highly
concentrated ‘peaks’, and are inappropriate for identifying domains
of dispersed histone modification marks (Pepke et al., 2009).
Moreover, the quality of ‘peak’ analysis is measured in terms of
sensitivity and specificity of peak calling (accuracy), along with how
narrow the peaks are (precision; often determined by the underlying
platform). But for diffuse histone modifications, significant ‘peaks’
are usually lacking and often the utility of identifying domains
depends on how clearly the boundaries are located.

2 METHODS
Our method for identifying epigenomic domains is based on hidden Markov
model (HMM) framework including the Baum–Welch training and posterior
decoding (see Rabiner, 1989 for a general description).

Single sample analysis: we first obtain the read density profile by dividing
the genome into non-overlapping fixed length bins and counting the number
of reads in each bin. The bin size can be determined automatically as
a function of the total number of reads and the effective genome size
(Supplementary Section S1.5). We model the read counts with the negative
binomial distribution after correcting for the effect of genomic deadzones.
We first exclude unassembled regions of a genome from our analysis. Second,
when two locations in the genome have identical sequences of length greater
than or equal to the read length, any read derived from one of those locations
will necessarily be ambiguous and is discarded. We refer to contiguous sets
of locations to which no read can map uniquely as ‘deadzones’. Those bins
within large deadzones (referred to as ‘deserts’) are ignored. For those bins
outside of deserts, we correct for the deadzone effect by scaling distribution
parameters according to the proportion of the bin which is not within a
deadzone (Supplementary Section S1.3).

We assume a bin may have one of the two states: foreground state with
high histone modification frequency and background state with low histone
modification frequency. We developed a two state HMM for segmentation
the genome into foreground domains and background domains.

Identifying and evaluating domain boundaries: while predicted domains
themselves give the locations of boundaries, we characterize the boundaries
with the following metrics. We evaluate domain boundaries based on
posterior probabilities of transitions between the foreground state and the
background state as estimated by the HMM. For each pair of consecutive
genomic bins, the posterior probability is calculated for all possible
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transitions between those bins. If a boundary corresponds to the beginning
of a domain, the boundary score is the posterior probability of a background
to foreground transition and vice versa.

Next an empirical distribution of posterior transition probabilities is
constructed by computing posterior transition probabilities from a dataset
of randomly permuted bins with the same HMM parameters. Those bins
whose posterior transition probabilities have significant empirical P-values
are kept and consecutive significant bins are joined as being one boundary.
We score each boundary with the posterior probability that a single transition
occurs in this boundary. The peak of a boundary is set to the start of the bin
with the largest transition probability (see Supplementary Section S3 for
details).

Incorporating a control sample: ChIP-Seq experiments are influenced by
background noises, contamination and other possible sources of error, and
researchers have begun to realize the necessity of generating experimental
controls in ChIP-Seq experiments. Two common forms of control exist:
a non-specific antibody such as IgG to control the immunoprecipitation,
and sequencing of whole cell extract to control for contamination and other
possible sources of error. With the availability of a control sample, we use
a similar two-state HMM with the novel NBDiff distribution to describe
the relationship between the read counts in the two samples. Analogous
to the Skellam distribution (Skellam, 1946), the NBDiff distribution
describes the difference of two independent negative binomial random
variables (see Supplementary Section S1.2 for details).

Simultaneously segmenting two modifications: the simultaneous analysis of
two histone modification marks may reveal more accurate information about
the status of genomic regions. It helps to understand the functions of different
histone modification marks. It is also of interest to compare samples from
different cells types because histone modification patterns are dynamic and
subject to change during cell differentiation. We use the NBDiff distribution
to model the read count difference between the two samples, and employ
three-state HMM: where the basal state means these two signals are similar,
the second state represents the signal in test sample A is greater than that
in the test sample B and the third state represents the opposite case (details
given in Supplementary Section S2.1).

3 EVALUATION AND APPLICATIONS
We simulated H3K36me3 ChIP-Seq data and compared RSEG,
SICER (Zang et al., 2009) and HPeak (Qin et al., 2010). In terms
of domain identification, RSEG outperforms SICER and HPeak for
single-sample analysis and yields comparable results to SICER for
analysis with control samples (Supplementary Section S4.1 and 4.2).
We applied RSEG to H3K36me3 ChIP-Seq dataset from (Barski
et al., 2007) and found a strong association between H3K36me3
domain boundaries with TSS and transcription termination site
(TTS), which supports that RSEG can find high-quality domain
boundaries (Supplementary Section S4.3).

We applied RSEG to four histone modification marks (H3K9me3,
H3K27me3, H3K36me3 and H3K79me2) from two separate studies
(Barski et al., 2007; Mikkelsen et al., 2007) (Supplementary
Section S5.1). In particular, we discovered an interesting
relationship between the two gene-overlapping marks H3K36me3
and H3K79me2 through boundary analysis. H3K79me2 tends to
associate with 5′-ends of genes, while H3K36me3 associates with
3′-ends. About 41% of gene-overlapping K79 domains cover TSS
in contrast to 11% of K36 domains. On the other hand, 84%

Table 1. Location of H3K36me3 and H3K79me2 domain boundaries
relative to genes

Boundaries (5′ →3′) K79 (%) K36 (%)

Upstream TSS → Inside Gene 31 3
Upstream TSS → Downstream TTS 10 8
Inside Gene → Inside Gene 46 13
Inside Gene → Downstream TTS 13 76

Fig. 1. The H3K36me3 and H3K79me2 domains and their boundaries at
DPF2 (chr11:64,854,646–64,880,304).

of K36 domains cover TTS in contrast to 23% of K79 domains
(Table 1). In those genes with both H3K36me3 and H3K79me2
signals, H3K79me2 domains tend to precede H3K36me3 domains,
for example the DPF2 gene (Fig. 1) (see Supplementary Section S5.2
for more information). This novel discovery demonstrates the
usefulness of boundary analysis for dispersed histone modification
marks.

Finally we applied our three-state HMM to simultaneously
analyze H3K36me3 and H3K79me2 (Supplementary Section S5.4).
The result agrees with the above observations. The application of our
three-state HMM to find differentially histone modification regions
is given in Supplementary Section S5.3.
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